
NBER WORKING PAPER SERIES

UBER AND ALCOHOL-RELATED TRAFFIC FATALITIES

Michael L. Anderson
Lucas W. Davis

Working Paper 29071
http://www.nber.org/papers/w29071

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
July 2021

The authors have not received any financial compensation for this project nor do they have any 
financial relationships that relate to this research. They thank Luna Yue Huang for excellent 
research assistance and Jonathan Wang, Santosh Rao Danda, and Cory Kendrick for assistance in 
accessing Uber data. The views expressed herein are those of the authors and do not necessarily 
reflect the views of the National Bureau of Economic Research.

NBER working papers are circulated for discussion and comment purposes. They have not been 
peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies 
official NBER publications.

© 2021 by Michael L. Anderson and Lucas W. Davis. All rights reserved. Short sections of text, 
not to exceed two paragraphs, may be quoted without explicit permission provided that full 
credit, including © notice, is given to the source.



Uber and Alcohol-Related Traffic Fatalities
Michael L. Anderson and Lucas W. Davis
NBER Working Paper No. 29071
July 2021
JEL No. I12,I18,R41,R49

ABSTRACT

Previous studies of the effect of ridesharing on traffic fatalities have yielded inconsistent, often 
contradictory conclusions. In this paper we revisit this question using proprietary data from Uber 
measuring monthly rideshare activity at the Census tract level. Most previous studies are based on 
publicly-available information about Uber entry dates into US cities, but we show that an 
indicator variable for whether Uber is available is a poor measure of rideshare activity — for 
example, it explains less than 3% of the tract-level variation in ridesharing, reflecting the 
enormous amount of variation both within and across cities. Using entry we find inconsistent and 
statistically insignificant estimates. However, when we use the more detailed proprietary data, we 
find a robust negative impact of ridesharing on traffic fatalities. Impacts concentrate during nights 
and weekends and are robust across a range of alternative specifications. Overall, our results 
imply that ridesharing has decreased US alcohol-related traffic fatalities by 6.1% and reduced 
total US traffic fatalities by 4.0%. Based on conventional estimates of the value of statistical life 
the annual life-saving benefits range from $2.3 to $5.4 billion. Back-of-the-envelope calculations 
suggest that these benefits may be of similar magnitude to producer surplus captured by Uber 
shareholders or consumer surplus captured by Uber riders.
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1 Background

There is a long history in economics of empirical analyses of traffic fatalities (Peltzman,
1975; Levitt and Porter, 2001b; Cohen and Einav, 2003; Ashenfelter and Greenstone, 2004;
White, 2004; Abouk and Adams, 2013; Jacobsen, 2013; Anderson and Auffhammer, 2014;
DeAngelo and Hansen, 2014). Analyses of alcohol and driving confirm that drunk drivers
are an order of magnitude more dangerous than sober ones (Levitt and Porter, 2001a)
and reveal that raising alcoholic beverage excise taxes and the minimum drinking age, and
lowering blood-alcohol-content thresholds, are effective at reducing drunk-driving fatalities
(Carpenter and Dobkin, 2009; Lovenheim and Slemrod, 2010; Sloan, 2020). More recently,
a body of research has focused on the externalities of ridesharing. Ridesharing affects
congestion (Hall et al., 2018; Tarduno, 2021), labor markets (Berger et al., 2018; Chen et
al., 2019), and alcohol consumption (Teltser et al., 2021).

A number of recent studies estimate the effects of ridesharing on traffic fatalities. This
existing work focuses on the timing of Uber entry into markets and yields inconsistent,
often contradictory, conclusions. Brazil and Kirk (2016) and Zhou (2020) exploit the
timing of Uber rollout across United States (US) counties and find no associations with
traffic fatalities or drunk driving respectively. Dills and Mulholland (2018) find that the
relationship between Uber entry and traffic fatalities can be negative or positive, depending
on the choice of specification. Greenwood and Wattal (2017) and Peck (2017) focus on the
timing of Uber rollout within California and New York City respectively; both studies
find reductions in fatalities after the introduction of Uber. In contrast, Barrios et al.
(2020) exploits city-level timing of Uber and Lyft rollout across the US and concludes that
ridesharing increases traffic fatalities.

In summary, the existing literature studies the effects of market entry by Uber and finds
that it may cause traffic fatalities to decrease, increase, or remain unchanged.1 Our study
represents, to the best of our knowledge, the first work that uses proprietary Uber rider-
ship data to estimate the effects of ridesharing on traffic fatalities. As we show in Section
3, market entry is a poor proxy for ridesharing activity, explaining less than 3% of the
tract-level variation in ridesharing. When we emulate existing studies we find inconsistent
and mostly statistically insignificant impacts. However, when we use the more detailed
proprietary data, we find a robust negative impact of ridesharing on traffic fatalities. Im-
pacts are negative and statistically significant across a range of alternative specifications
and larger during nights and weekends, as expected.

The paper performs several back-of-the-envelope calculations aimed at putting our results
in context. Scaled up to reflect current ridership levels, our results imply that ridesharing

1One exception is Morrison et al. (2017), which studies the disruption and resumption of Uber service
in Las Vegas, Reno, San Antonio, and Portland. It finds mixed evidence — in Portland the resumption of
Uber service correlated with a drop in alcohol-involved crashes, but in the other cities it did not.
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reduces total US alcohol-related traffic fatalities by 6.1% and reduces total US traffic fa-
talities by 4.0%. Based on conventional estimates of the value of statistical life (VSL), the
annual life-savings benefits range from $2.3 to $5.4 billion. We compare these impacts to
the market capitalization of Uber and estimates in the literature for the total consumer
surplus from ridesharing.

2 Data

We combine data from two sources: the National Highway Traffic Safety Administration
(NHTSA) Fatality Analysis Reporting System (FARS) and rideshare activity from Uber.
FARS data represent a census of fatal crashes in the US. FARS contains detailed infor-
mation on each crash, including geographic coordinates, roadway type, date and time,
suspected involvement of alcohol, and driver characteristics. We include FARS data from
2001 to 2016.2 Since Uber Technologies did not begin operations until 2010, and UberX
(the service in which drivers typically use personal vehicles) did not launch until 2012, this
long time series allows us to examine pre-trends in areas that subsequently experienced
large increases in rideshare activity.

Appendix Table A1 reports summary statistics from the FARS data. In the US as a whole
there are an average of 34,077 fatalities annually over the sample period. In areas that see
rideshare activity by 2016 — our analytic sample — there are an average of 15,898 fatalities
annually. In these areas, approximately 33% of fatalities involve multi-vehicle collisions,
40% involve single-vehicle collisions, and 26% involve pedestrians or bicyclists.

Alcohol involvement is reported in approximately 30% of fatal crashes. FARS contains
several data elements pertaining to alcohol involvement. We use a variable that codes the
number of drinking drivers involved in a crash. A driver qualifies as drinking if he has a
positive blood alcohol concentration (BAC) or if police report alcohol involvement.3 We
classify the crash as involving alcohol if at least one driver was drinking. This necessarily
undercounts the true number of alcohol-involved crashes because police may not always
detect or report alcohol involvement, and alcohol data are “often missing”, resulting in
an “undercount [of] the actual number of drunk drivers” (National Highway Traffic Safety
Administration 2016, p. 72). Thus, some fatal crashes with no reported alcohol involvement
nevertheless involve alcohol, and we also estimate models that specify any fatal crash as
the dependent variable.

Rideshare activity data come from Uber. These data report trip counts aggregated to the
Census tract-by-month level for all Uber trips originating in a given Census tract, excluding

2The 2000 file lacks crash geographic coordinates.
3According to the FARS codebook, a driver charged with an alcohol violation does not count as a

drinking driver unless the driver also has a positive BAC or the police report alcohol involvement.
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those for which the origin or destination is an airport.4 The data cover 1 July 2012 though
1 January 2017 for all Census tracts in the US, excluding those in Seattle, WA and New
York City, NY (NYC).5 Trip counts are normalized to the level of a specific Census tract
in San Francisco, CA during May 2015, and Census tracts with less than 0.05% of this
level of trip activity in a given month are rounded down to zero. We also observe data on
the percentage of trips in a given tract-by-month observation that occurred between 8 PM
on Friday and 4 AM on Sunday, a period during which drunk driving is more prevalent.
While the authors had input into the data extraction parameters, decisions on what data
to release ultimately rested with Uber staff.

To construct the analytic data set, we merged FARS data and Uber trip data at the tract-
by-month level. Specifically, we assigned each crash in FARS to a Census tract and month
using FARS data elements on longitude, latitude, and date. We then totaled different
outcomes — e.g. total fatalities, total alcohol-involved fatalities, total fatalities by hour
of day or day of week, etc. — at the tract-by-month level. Our largest estimation sample
contains 2.7 million tract-by-month observations.

Uber trips are recorded based on Census tract of origin. The average Census tract, however,
contains approximately 4,000 inhabitants, and a large county contains dozens of Census
tracts. Many trips thus traverse more than one Census tract — the median Uber trip
during our sample period was approximately five miles in length, and the 90th percentile
trip was approximately ten miles in length.6 To account for the multi-tract nature of most
trips, we constructed the treatment of interest to be an inverse-distance-weighted average
of Uber trip activity in nearby Census tracts. Specifically, for tract i we took a weighted
average of trip activity in all tracts whose centroids are within 10 miles of tract i ’s centroid,
with weights proportional to distance−1

ij , where distanceij measures the distance in miles

between tract i and tract j.7 We confirm that our results are not sensitive to the exact

4Census tracts are based on 2010 Census definitions.
5To protect their proprietary data, Uber provided us with trip counts normalized to an arbitrary level.

Public authorities in Seattle and NYC, however, publish detailed rideshare trip data. Thus, if our data set
included Census tracts in these two cities, we would be able to back out raw trip counts.

6Source: Communications with Uber staff.
7Tract i’s weight is normalized to one, and a tract whose centroid is one mile from tract i’s centroid

receives a weight of 0.25 since, in a perfect grid, each tract would be surrounded by four other tracts (note
that the average tract size in a moderately-dense city is on the order of one square mile; for example, San
José, CA is 181 square miles and contains approximately 200 Census tracts). In a simple gravity model in
which trips radiate uniformly in all directions and continue indefinitely, the share of trips originating in j
that cross tract i is proportional to the inverse of the distance between the two tracts. However, there are
two complicating factors in our context. First, trips do not continue indefinitely; they die off with distance.
Second, trips do not radiate uniformly, but tend to concentrate within travel corridors. The first factor
suggests that the weight should decline more strongly with distance, while the second factor suggests that
the weight should decline less strongly with distance. We assume that the two factors roughly offset each
other, but we check that our results are robust to weights that decline somewhat more or less steeply than
distance−1

ij (Appendix Tables A2 and A3).
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specification of the weight, but given the spatially correlated nature of the treatment our
analysis is best conceptualized as a city-level or metropolitan-area-level analysis.

One limitation of our data is that we do not measure activity for other ridesharing com-
panies. During our sample period, however, Uber captured most of the US ridesharing
market. For example, Lyft — Uber’s largest US competitor by far — had approximately
6% and 14% of Uber’s 2015 and 2016 US bookings respectively (the last two years of our
sample; see Appendix A1 for details). Thus our data represent a good proxy for overall
ridesharing activity during our sample period.

3 Empirical strategy and results

3.1 Estimates using publicly-available data

Before executing analyses with proprietary Uber data, we start by reporting results from a
set of regressions based on publicly-available data. Following the approach used by several
previous papers (see Section 2), we estimate regressions of the following form,

yit = β0 + β11(Rideshare Entry)it + δt + γi + εit. (1)

The dependent variable yit is an indicator for the presence of any fatal crash involving
alcohol in tract i in month t, or, alternatively for any fatal crash of any kind.8 When
reporting results we multiply yit by 100 for coefficient readability. The independent variable
of interest, 1(Rideshare Entry)it, is an indicator variable for whether Uber has entered the
CBSA containing census tract i in month t.9

All specifications include month-of-sample (δt) and Census-tract (γi) fixed effects, control-
ling for any factors that change uniformly over time or differ across tracts in a time-invariant
manner. The estimation sample runs from 1 January 2012 to 1 January 2017, and is re-
stricted to include only tracts where Uber entry occured during this period. We exclude
other census tracts because they tend to be less urban and unlikely to serve as a valid
counterfactual.

Table 1 reports estimates and standard errors (clustered by state). Panels (A) and (B)
report estimates for fatal crashes involving alcohol, and any fatal crash, respectively. Col-
umn (1) reports results for the complete sample of about 100 CBSAs, and then Columns

8There is rarely more than one fatal crash in a tract-month observation, and there is typically only one
fatality per fatal crash. Average total fatalities in a tract-month observation conditional on any fatal crash
occurring are 1.13.

9To construct this measure we downloaded public data on Uber entry by city. Like most of the existing
literature, we focus on UberX, the service that people generically refer to as “Uber”. We matched cities to
Core-Based Statistical Areas (CBSAs) and coded Census tracts accordingly. We performed this match for
all cities with populations of 150,000 or more.
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(2) through (4) restrict the sample to the first 50, 25, and 10 CBSAs where Uber entry
occurred.

Consistent with the existing literature, the estimates are highly inconsistent, including
some positive and some negative point estimates. Of the eight estimates, none are statis-
tically significant. On the basis of the estimates in Table 1 it is impossible to draw strong
conclusions about the relationship between ridesharing and traffic fatalities.

3.2 Main results

We now turn to analyses with proprietary data on Uber rideshare activity. We estimate a
series of regressions identical to Equation (1), but we replace the indicator for Uber entry
with our continuous measure of rideshare activity:

yit = β0 + β1Rideshareit + δt + γi + εit (2)

In particular, the independent variable of interest, Rideshareit is the rideshare activity index
for tract i in month t, constructed as described in Section 2. We rescale the independent
variable such that a value of 1 corresponds to the average value of the index in 2019 in
our main analytic sample (a value that lies well within the support of our data).10 The
coefficient of interest thus approximates the average effect of ridesharing in 2019 on the
probability of a fatal alcohol-involved crash, measured in percentage points.

As before, we limit the estimation sample to tracts that register nonzero ridesharing activity
by the end of our sample; conceptually this strategy is similar to a “staggered adoption”
design, but with a continuous treatment. We continue to include month-of-sample (δt) and
Census-tract (γi) fixed effects. The identifying assumption is that, after controlling for
tract and month fixed effects, ridesharing growth is uncorrelated with other tract-specific,
time-varying factors that affect alcohol-related traffic fatalities. We probe this assumption
in Section 3.4.

To account for dependence over time and across tracts, we cluster standard errors at the
state level.11 Since we explore a variety of specifications and samples in the paper, we also
report false-discovery-rate (FDR) adjusted “q-values” (Benjamini and Hochberg, 1995).
Briefly, the FDR represents the expected proportion of rejections that are false discoveries;
controlling FDR at q < 0.1 thus indicates that 90% of rejections should be true rejections
(Anderson, 2008).12

10Uber activity in 2020 and 2021 was heavily impacted by COVID-19.
11Clustering at the county or CBSA level yields qualitatively similar results.
12For FDR control we define the family of hypotheses tested to include all main-body and appendix

tables, with the exception of explicit placebo tests, which form their own family. The main family of
hypotheses thus includes Tables 2, 3, 5, A2, A3, A4, A7, and Columns (5) and (6) of Table 4 (33 tests).
The family of placebo hypotheses includes Columns (1) through (4) of Table 4 and Tables A5 and A6 (12
tests).
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Table 2 reports estimates of β1 for a range of sample restrictions. The first column es-
timates Equation (2) using all tracts with nonzero ridesharing activity by January 2017
(approximately 45,000 tracts). A one unit increase in ridesharing activity reduces the
probability of an alcohol-related fatal crash by 0.038 percentage points (t = −3.2). This
corresponds to approximately a 4.8% decrease in alcohol-related fatalities. Columns (2)
through (5) estimate Equation (2) when restricting the sample to include tracts whose
endpoint rideshare activity falls within the top 50, 25, 15, and 10 percent of all tracts re-
spectively. The estimate of β1 in Column (2) implies that a one unit increase in ridesharing
activity reduces alcohol-related fatalities by 0.043 percentage points (t = −3.6), or 6.1%
of the mean. The estimates of β1 in Columns (3) and (4) are similar in magnitude and
remain highly significant. In Column (5) the implied effect (−0.03 percentage points) is
6% of the mean and remains statistically significant, despite dropping 90% of tracts.

The evidence in Table 2 implies a significant negative relationship between ridesharing
and alcohol-related fatalities.13 The consistent effects in Table 2 stand in contrast to the
varied conclusions in Table 1 and in the existing previous literature. The results suggest
that rideshare entry is a poor proxy for true rideshare activity during our sample period;
indeed, a regression of rideshare activity on rideshare entry yields a R2 of 0.03. The
indicator for Uber entry fails to capture the large variation in the intensity of ridesharing
both within and across CBSAs.

3.3 Nights and weekends

We next focus on effects during nights and weekends. We expect the effects of ridesharing
activity to concentrate during nights and weekends for two reasons. First, drunk-driving
fatalities concentrate during nights and weekends; in our analytic sample, approximately 75
percent of alcohol-involved fatalities occur between 8 pm and 6 am (see Appendix Figures
A2 and A3). Second, daytime drunk-driving fatalities are less plausibly related to dining
and entertainment trips, and more plausibly related to alcohol abuse. To the extent that
ridesharing is a better substitute for driving for dining and entertainment trips, ridesharing
activity should have stronger effects during night than day.

Table 3 reports estimates of Equation (2) when limiting measurement of the dependent
or independent variables to nights and weekends. We use the top 50 percent sample from
Column (2) of Table 2 for the analytic sample. Column (1) reproduces the top 50 percent
estimate from Table 2 for comparison purposes. Column (2) reports β̂1 when Rideshareit is
computed using only rides occurring between 8 pm Friday and 4 am Sunday. The estimate

13Appendix Tables A2 and A3 reproduce Table 2 using an independent variable that applies a weight
proportional to distance−0.9 or distance−1.1 respectively (as compared to distance−1) The statistical signif-
icance and coefficient magnitudes are broadly similar to Table 2. If anything the patterns in Appendix Table
A2 suggest that using a distance weight that declines less steeply might yield somewhat larger estimates.
To remove researcher discretion, however, we prefer the simple inverse distance weight.
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of β1 is of similar magnitude and remains highly significant, suggesting that weekend
ridesharing activity alone is a sufficient statistic for predicting effects on alcohol-involved
fatalities.14 Column (3) reports β̂1 when yit is computed using only fatalities occurring
between 8 pm and 6 am. The estimate of β1 changes to -0.026 and remains significant.
Column (4) combines both restrictions from Columns (2) and (3), while Columns (5) and
(6) further limit yit to fatalities occurring between 8 pm Friday and 4 am Sunday. In
all three columns the estimates of β1 remain negative, though they lose significance in
Columns (4) and (6).

3.4 Threats to identification

We anticipate two primary threats to identification in Equation (2): differential trends in
factors affecting drunk driving and differential trends in factors affecting traffic fatality
rates. Examples of the first threat include alcohol prices, drunk-driving penalties, and
enforcement. Examples of the second threat include changes in vehicle miles traveled,
infrastructure improvements, vehicle fleet technology, driver characteristics, and health
care systems.

To address the first threat, we modify Equation (2) to include state-by-month fixed effects,
δst:

yist = β0 + β1Rideshareist + δst + γi + εist (3)

Ridesharing growth in our sample occurs over a period of only several years, and most
policies that could quickly affect alcohol prices or drunk driving — including alcohol taxes,
drunk-driving penalties, and enforcement by state highway patrols — vary primarily at
the state level. State-by-month fixed effects thus absorb many potential confounders of
interest. Appendix Table A4 reports results from estimating Equation (3) with all alcohol-
related fatalities (Columns (1) and (3)) or nighttime alcohol-related fatalities (Column (2))
as the dependent variable. The first two columns limit the sample to tracts with above
median endpoint rideshare activity, and the last column limits the sample to tracts in the
top 25 percent of endpoint rideshare activity. In all three columns the estimates of β1

are of similar magnitude to the analogous estimates from Tables 2 and 3 and they remain
highly significant.

To address the second threat, we use daylight hours to execute a “triple-differences” design.
Most factors that affect traffic fatality rates should impact both daytime and nighttime
fatalities. Testing for effects during daytime hours thus represents an important falsification
test for our research design. Table 4 reports estimates of Equation (3) when limiting

14As in Column (1), we rescale the independent variable in Column (2) such that a value of 1 corresponds
to the approximate average value of the index in 2019. The coefficient in this column does not have a direct
causal interpretation, however, since non-weekend ridesharing activity correlates with weekend ridesharing
activity.
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measurement of the dependent variable to daytime hours (8 am to 5 pm). Columns (1)
and (2) report estimates of β1 for tracts whose endpoint rideshare activity is within the top
50 percent or the top 25 percent respectively. In both cases β̂1 is close to zero, precisely
estimated, and statistically insignificant.

Falsification tests using drunk-driving fatalities, however, may be limited in what they can
detect because the majority of alcohol-related fatalities occur during nighttime. Columns
(3) and (4) reproduce Columns (1) and (2) but replace yit with an indicator for any fatal
crash in tract i and month t during daytime hours. The estimates of β1 are close to
zero, precisely estimated, and statistically insignificant. These results imply the absence
of differential trends in traffic fatalities in high rideshare growth tracts.

To formally estimate the triple-differences design we specify the following regression:

yitd = β0 + β1Rideshareit · 1(d = 1) + δtd + γit + φid + αstd + εitd (4)

where yitd is an indicator for any alcohol-related fatalities in tract i in month t during time-
of-day d. We let d = 0 correspond to hours between 8 am and 5 pm (daytime), and d = 1
correspond to all other hours. The coefficient of interest, β1, is on the interaction between
Rideshareit and an indicator for non-daytime hours. To operationalize the triple-differences
design Equation (4) includes month-by-time-of-day (δtd), tract-by-month (γit), and tract-
by-time-of-day (φid) effects, absorbing all but the itd-level variation. For completeness we
also include the state-by-month fixed effects, now interacted with time-of-day (αstd).

Columns (5) and (6) report estimates of β1 from Equation (4), using the same estimation
samples as Columns (1) and (2) respectively. In both cases β̂1 is similar in magnitude to
the corresponding estimate from Table 2 (Columns (2) or (3)) and statistically significant,
as we might expect given the null effects in Columns (1) and (2).

As a final challenge to our research design, we reproduce estimates of Equation (2) when
shifting the treatment back in time by seven (2005 to 2009) or twelve years (2001 to 2004).
We use these two nonoverlapping periods because they predate the launch of the Uber
app.15 These placebo estimates, presented in the first two columns of Appendix Table
A5, test whether future changes in ridesharing activity predict current changes in alcohol-
related fatalities. The estimates of β1 are statistically insignificant, suggesting that tracts
with high future ridesharing growth did not have different alcohol-related fatality trends in
the years prior to the launch of Uber than those with lower future ridesharing growth.

3.5 All traffic fatalities

While alcohol-related fatalities are the focus of our analysis, rideshare activity may affect
non-alcohol-related traffic fatalities as well for two reasons. First, some fatal crashes with-
out reported alcohol involvement may nevertheless involve alcohol, as noted in Section 2.

15Uber launched the “UberCab” app in San Francisco in 2010.
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For example, even having a driver charged with an alcohol violation does not qualify a
crash as involving alcohol, unless the driver also has a positive BAC or the police report
alcohol involvement. Second, ridesharing drivers may be safer (or less safe) than the drivers
they replace, regardless of drunk-driving behavior.16

To measure the effect of rideshare activity on all traffic fatalities, we estimate versions of
Equations (3) and (4) that specify the dependent variable as an indicator for any fatal crash.
Columns (1) and (2) in Table 5 estimate Equation (3) with yit specified as an indicator for
any fatal crash. The estimates of β1 are highly significant and roughly twice as large as the
analogous estimates in Table 2 (Columns (2) and (3)), suggesting that some fatal crashes
without reported alcohol involvement nevertheless involve alcohol. Columns (3) and (4)
in Table 5 estimate Equation (4), the triple-differences design, with yitd specified as an
indicator for any fatal crash. The estimates of β1 are of approximately similar magnitude
as in Columns (1) and (2) and remain highly significant.17 Though the point estimates
for effects on any fatalities are larger than those for alcohol-involved fatalities, it is worth
clarifying that the implied percentage effects are substantially smaller for total fatalities
than for alcohol-related fatalities, as is evident from comparing the point estimates to the
respective means of the dependent variables.

4 Discussion

The coefficient estimates in Table 2 represent the monthly effect of the average level of 2019
Uber activity in tracts contained in our main analytic sample (Column (2) of Table 2). To
compute annual alcohol-related fatal crashes avoided due to Uber circa 2019, we multiply
these coefficients by the number of sample tracts (36,780) times 12.18 Finally, we multiply
by the average number of fatalities conditional on any fatal crash occurring (1.13).

Our estimates of the effects on alcohol-related fatalities imply that Uber saved 214 lives
in 2019, or a reduction of approximately 6.1%. We compute this estimate using Column
(2) of Table 2, but using the coefficient from Column (3), for example, generates broadly

16Ridesharing activity could also affect total travel. However, we expect that the increase in travel would
be weakly positive, which would generally increase traffic fatalities.

17As in Section 3.4, we estimate placebo specifications that shift the treatment back in time by seven
or twelve years. These placebo estimates, presented in Appendix Table A6, test whether future changes
in ridesharing activity predict current changes in traffic fatalities. The estimates of β1 are statistically
insignificant in three of four columns. The estimate is at the margin of significance in Column (2), but
insignificant after FDR adjustment. Overall these results reveal that tracts with high future ridesharing
growth did not consistently have different fatality trends in the years prior to the launch of Uber than those
with lower future ridesharing growth, but they also suggest that the models with all traffic fatalities may
be slightly less robust than those with alcohol-related fatalities only.

18Multiplying by 12 annualizes the estimates, since our data are at the tract-by-month level. We also
divide by 100 since the tables multiply yit by 100 for coefficient readability.
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similar estimates.19 Alternatively, we can compute the effects of Uber on total fatalities
using the estimate from Column (1) of Table 5. This coefficient implies that Uber saved 494
lives in 2019, or a reduction of approximately 4.0%. Note that these calculations include
lives saved by Uber only; total lives saved by ridesharing would also include the impacts
of competitors such as Lyft.

To understand the economic magnitudes of these estimates, we apply the Department of
Transportation value of a statistical life (VSL) of $10.9 million ($2019, US Department
of Transportation 2021). The annual life-saving benefits range from $2.3 billion (214 lives
saved) to $5.4 billion (494 lives saved). These benefits represent a mixture of internally
and externally captured benefits. To approximate the share of benefits that are internal
versus external, we estimate Equation (2) separately for single-vehicle crashes, multi-vehicle
crashes, and pedestrian/bicyclist-involved crashes. These results, reported in Appendix
Table A7 suggest that single-vehicle, multi-vehicle, and pedestrian crashes account for
approximately 30%, 54%, and 16% of fatalities involving drunk drivers respectively. If half
the multi-vehicle fatalities and all of the pedestrian/bicyclist fatalities are external, then
43% of the life-saving benefits represent pure externalities.20

Of the remaining 57% of life-saving benefits, an indeterminate fraction are internalized.
While drunk individuals by definition have impaired decision-making skills, they may
choose whether to drive or rideshare at a point when they are still sober. If they fully
understand the risks of drunk driving at that point, they should internalize their own
safety benefits of ridesharing. Nevertheless, the general consensus in the economic litera-
ture is that the decision to drink and drive is not fully rational (Sloan, 2020); for example,
drinker-drivers exhibit time-inconsistent preferences (Sloan et al., 2014). We conserva-
tively assume that drinking drivers understand and internalize the vast majority (7/8ths)
of their private safety benefits. Under that assumption, half of the total life-saving benefits
represent external benefits ($1.2 to $2.7 billion), and the other half are internalized by
riders.

We compare these external and internal benefits against two benchmarks: producer surplus
captured by Uber shareholders and consumer surplus captured by Uber riders. Uber’s

19To compute total lives saved using only the top 25 percent of tracts, i.e. Column (3), we first normalize
the index by the average level of Uber activity in these tracts. Doing so transforms the coefficient in Column
(3) to −0.076. We then perform the same calculation as above and find that, in just the top 25 percent of
tracts, Uber saved approximately 189 lives in 2019. Intuitively, the majority of lives saved are concentrated
in the areas with the highest Uber ridership.

20In principle, tort liability rules and insurance mandates could internalize the externality in these cases.
Nevertheless, even if the drunk driver is found liable for the crash, almost no drivers possess assets that
are sufficient to cover a VSL of $10 million. Furthermore, state-mandated levels of liability insurance are
grossly inadequate to cover the costs of a fatality; only Maine require drivers to carry more than $30,000
of liability coverage for each person injured (Insurance Information Institute, 2021). Many drivers remain
uninsured despite the regulations, and few drivers have policies that exceed several hundred thousand
dollars of coverage.
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market capitalization represents producer surplus captured by Uber shareholders. In 2019,
Uber’s average market capitalization was $51.3 billion. After adjusting for the proportion of
revenues outside the US or not involving ridesharing, we estimate that domestic ridesharing
accounted for $19.2 billion of this market capitalization.21 To convert from stocks to
flows we apply a price-earnings (PE) ratio of 22.7, the PE ratio for the S&P 500 during
this period.22 We thus calculate that US ridesharing producer surplus captured by Uber
shareholders was equivalent to an annual stream of $0.9 billion ($19.2b / 22.7). The external
life-saving benefits of Uber ($1.2 to $2.7 billion) — which represent pure unmeasured
welfare gains — thus exceed shareholder producer surplus.

Estimating consumer surplus accruing from Uber’s existence is challenging because it de-
pends on the long-run price elasticity of demand. A recent experiment by Christensen and
Osman (2021) estimates the medium-run price elasticity of demand for Uber by randomly
assigning large discounts of 25% to 50% to Uber users for three months. While this paper
has limitations in our context — e.g. the three-month treatment is not truly long-run, and
it was conducted in Cairo — it is to our knowledge the best available evidence on this
parameter.23 Christensen and Osman (2021) estimates a price elasticity of approximately
−8.

A long-run price elasticity of −8 implies that consumer surplus equals one-seventh of to-
tal spending (Appendix A2).24 Total spending by domestic Uber riders in 2019 was ap-
proximately $24.7 billion.25 An estimate of 2019 consumer surplus is thus $24.7b/7 =

21The US and Canada accounted for 62% of 2019 revenue, and ridesharing accounted for 75% of 2019
revenue (Uber Technologies 2020, p. 61 and p. 115). We assume that the US accounted for 90% of US and
Canada revenue, based on their respective populations. Finally, we net out NYC and Seattle revenue using
publicly available ridership figures, as those cities are not in our data. See Appendix A1 for details.

22This ratio is likely conservative since Uber is a “growth” stock.
23Cohen et al. (2016) estimates the short-run price elasticity of demand for Uber using a clever natural

experiment generated by surge pricing. The short-run price elasticity of demand is not our object of interest,
however; as Cohen et al. (2016) point out, “If...one wanted to know how consumers would be affected if Uber
disappeared permanently, a long-run elasticity would be more appropriate.” (p. 21) Similarly, Goldszmidt
et al. (2020) estimate the value-of-time using a field experiment with Lyft. As part of this experiment they
randomly vary the surge-pricing multiplier to identify price elasticities. While the manipulation can last
up to eight weeks, it applies only to surge pricing, and all changes in quantities are measured conditional
on launching the app (i.e. the relevant price variation is likely the difference between the price a user
expects when launching the app and the actual displayed price). Thus the price elasticity measured is
primarily short-run in nature, which works well for the authors’ purposes but is less relevant to our welfare
calculations. The results in both papers suggest that the short-run price elasticity of demand is likely
inelastic (less than one in absolute value).

24Notably, this estimate is not far outside the range reported in Shapiro (2018), which estimates a
structural model and concludes that consumer surplus from Uber in NYC ranges from approximately 2%
of fares in central Manhattan to 10% of fares in less dense outer boroughs.

25Uber gross ridesharing bookings were $49.7 billion in 2019 (Uber Technologies 2020, p. 61). To
compute US ridesharing bookings we apply the same country-specific shares as in Footnote 21 and net out
NYC and Seattle. See Appendix A1 for details.
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$3.5 billion. The internalized life-saving benefits alone would thus represent between 34%
and 77% of total consumer surplus. At a price elasticity of −4 the internalized life-saving
benefits represent between 15% and 33% of consumer surplus, and at a price elasticity of
−2, the internalized life-saving benefits still represent between 6% and 14% of consumer
surplus.

5 Conclusion

Previous researchers have worked hard to learn as much as possible from publicly-available
information about Uber. Our analysis suggests, however, that whether Uber is operating
in a given metropolitan area is an inherently poor proxy for ridesharing activity. When we
instead use proprietary tract-level information on Uber ridership, the impacts come into
sharper focus, and we find robust, large, and statistically significant negative impacts on
alcohol-related traffic fatalities.

Last year in the United States there were 42,000 traffic fatalities, including over 10,000 that
were alcohol-related. The total economic damages, applying a standard VSL, approach half
a trillion dollars. Understanding the factors that contribute to these deaths continues to
be an important question for economists and other researchers. Our results suggest that
ridesharing can play an important role in reducing these deaths, and that these benefits
may represent a meaningful fraction of the total consumer surplus from ridesharing.
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Table 1: Emulating Existing Studies Using Data on Uber Entry

(1) (2) (3) (4)

A. Dependent variable: Drunk death
Rideshare entry -0.020 -0.027 -0.039 -0.033

(0.020) (0.024) (0.026) (0.022)

Dependent variable mean 0.798 0.738 0.577 0.491

B. Dependent variable: Any death
Rideshare entry 0.018 -0.014 -0.040 0.020

(0.036) (0.041) (0.063) (0.051)

Observations 2,774,640 2,067,420 1,364,700 812,400
Tracts 46,244 34,457 22,745 13,540
Dependent variable mean 2.791 2.567 2.154 1.859
CBSAs Any entry First 50 First 25 First 10

Notes: This table reports coefficient estimates from eight separate least squares
regressions. The unit of observation is the Census tract by month. The dependent
variable in all regressions is an indicator for alcohol-related fatalities (Panel A)
or any fatalities (Panel B), multiplied by 100. The independent variable is an
indicator for whether Uber has entered the CBSA containing Census tract i in
month t. All regressions include Census-tract and month-of-sample fixed effects.
Parentheses contain standard errors clustered by state.
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Table 2: The Effect of Uber on Alcohol-Related Traffic Fatalities, Main Results

(1) (2) (3) (4) (5)
Drunk death Drunk death Drunk death Drunk death Drunk death

Rideshare index -0.038 -0.043 -0.040 -0.039 -0.030
(0.012) (0.012) (0.013) (0.014) (0.012)
0.007 0.003 0.006 0.009 0.016

Observations 2,688,480 2,206,800 1,098,840 657,900 438,840
Max tract rideshare activity Nonzero Top 50 pct Top 25 pct Top 15 pct Top 10 pct
Tracts 44,808 36,780 18,314 10,965 7,314
Mean dependent variable 0.788 0.705 0.609 0.556 0.497
Mean index 0.119 0.145 0.280 0.437 0.605

Notes: This table reports coefficient estimates from five separate least squares regressions that progressively
restrict the sample to locations with higher ridesharing activity by the end of our sample period. The unit of
observation is the Census tract by month. The dependent variable in all regressions is an indicator for alcohol-
related fatalities, multiplied by 100. The independent variable is the weighted average of rideshare activity
originating within a 10-mile radius of Census tract i in month t, with weights equal to 0.25 · distance−1,
normalized such that a value of 1 corresponds to the average value of the index in 2019. All regressions
include Census-tract and month-of-sample fixed effects. Parentheses contain standard errors clustered by
state. FDR-control q-values in italics.
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Table 3: The Effect of Uber on Alcohol-Related Traffic Fatalities, Nights and Weekends

(1) (2) (3) (4) (5) (6)
Drunk death Drunk death Drunk death Drunk death Drunk death Drunk death

Rideshare index -0.043 -0.039 -0.026 -0.022 -0.017 -0.014
(0.012) (0.012) (0.013) (0.013) (0.008) (0.009)
0.003 0.006 0.046 0.105 0.044 0.114

Observations 2,206,800 2,206,800 2,206,800 2,206,800 2,206,800 2,206,800
Dependent variable coverage All All 8p-6a 8p-6a Fr 8p-Su 4a Fr 8p-Su 4a
Independent variable coverage All Fr 8p-Su 4a All Fr 8p-Su 4a All Fr 8p-Su 4a
Tracts 36,780 36,780 36,780 36,780 36,780 36,780
Mean dependent variable 0.705 0.705 0.506 0.506 0.288 0.288
Mean index 0.145 0.160 0.145 0.160 0.145 0.160

Notes: This table reports coefficient estimates from six separate least squares regressions that progressively restrict the hours
used to measure the dependent variable, independent variable, or both, to nights and weekends. The unit of observation
is the Census tract by month. The sample includes only tracts with rideshare activity in the top 50% by the end of our
sample period. The dependent variable in all regressions is an indicator for alcohol-related fatalities, multiplied by 100. The
independent variable is the weighted average of rideshare activity originating within a 10-mile radius of Census tract i in
month t, with weights equal to 0.25 · distance−1, normalized such that a value of 1 corresponds to the average value of the
index in 2019. All regressions include Census-tract and month-of-sample fixed effects. Parentheses contain standard errors
clustered by state. FDR-control q-values in italics.
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Table 4: The Effect of Uber on Alcohol-Related Traffic Fatalities, Daytime Hours and Triple Differences

(1) (2) (3) (4) (5) (6)
Drunk death Drunk death Any death Any death Drunk death Drunk death

Rideshare index -0.005 0.001 -0.010 -0.001
(0.003) (0.002) (0.015) (0.011)
0.343 0.787 0.787 0.951

Rideshare index * Night -0.038 -0.042
(0.016) (0.011)
0.021 0.002

Observations 2,206,800 1,098,780 2,206,800 1,098,780 4,413,600 2,197,560
Max tract rideshare activity Top 50 pct Top 25 pct Top 50 pct Top 25 pct Top 50 pct Top 25 pct
Tracts 36,780 18,314 36,780 18,314 36,780 18,314
Mean dependent variable 0.0829 0.0626 0.734 0.618 0.352 0.304
Mean index 0.145 0.280 0.145 0.280 0.0726 0.140

Notes: This table reports coefficient estimates from different least squares regressions. The unit of observation is the
Census tract by month (Columns (1) through (4)) or Census tract by month by time-of-day (Columns (5) and (6)).
The dependent variable in Columns (1) and (2) is an indicator for alcohol-related fatalities during daytime hours (8
am to 5 pm), multiplied by 100. The dependent variable in Columns (3) and (4) is an indicator for any fatalities
during daytime hours, multiplied by 100. Finally, the dependent variable in Columns (5) and (6) is an indicator for
alcohol-related fatalities in either daytime or non-daytime hours, multiplied by 100. In all regressions, the independent
variable is the weighted average of rideshare activity originating within a 10-mile radius of Census tract i in month t,
with weights equal to 0.25 · distance−1, normalized such that a value of 1 corresponds to the average value of the index
in 2019. All regressions include Census-tract and state-by-month-of-sample fixed effects; Columns (5) and (6) include
tract-by-month-of-sample, time-of-day-by-month-of-sample, tract-by-time-of-day, and state-by-month-of-sample-by-time-
of-day fixed effects. Parentheses contain standard errors clustered by state. FDR-control q-values in italics.
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Table 5: The Effect of Uber on All Traffic Fatalities, State-by-Month FEs/Triple Differences

(1) (2) (3) (4)
Any death Any death Any death Any death

Rideshare index -0.099 -0.089
(0.021) (0.018)
0.001 0.001

Rideshare index * Night -0.078 -0.088
(0.022) (0.015)
0.003 0.001

Observations 2,206,800 1,098,780 4,413,600 2,197,560
Max tract rideshare activity Top 50 pct Top 25 pct Top 50 pct Top 25 pct
Tracts 36,780 18,314 36,780 18,314
Mean dependent variable 2.458 2.242 1.229 1.121
Mean index 0.145 0.280 0.0726 0.140

Notes: This table reports coefficient estimates from four separate least squares regres-
sions. Specifications are identical to Table 2, Columns (2) and (3) (with the inclusion
of state-by-month-of-sample fixed effects), and Table 4, Columns (5) and (6), except
that the dependent variable is an indicator for any fatalities (rather than alcohol-
related fatalities), multiplied by 100. Parentheses contain standard errors clustered
by state. FDR-control q-values in italics.
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Appendix

Not For Print Publication

A1 Ridesharing revenue and market capitalization

A1.1 Early Lyft market share

To compute Lyft marketshare in 2015 and 2016, we first estimate Lyft gross bookings (i.e.
rider payments). Lyft (2019) reports 2016 revenue as $343m (p. 86), and we estimate 2015
revenue as $72m based on reported 2016 ridership growth of 575% (p. 82). 2016 revenue
as a percentage of bookings was 18% (p. 82), yielding gross bookings of $1.9b and $400m
in 2016 and 2015 respectively. Note that Lyft operated exclusively in the US and Canada
during these years.

Uber Technologies (2019) reports 2016 US and Canada ridesharing revenue at $2.373b, or
62% of total revenue (p. F-31). It reports 2015 total revenue at $1.995b (p. 96), so we
estimate $1.273b ridesharing revenue in US and Canada, using the 62% figure from 2016.
2016 ridesharing revenue as a percentage of bookings was 18% (p. 122), yielding gross US
and Canada bookings of $13.2b and $7.1b in 2016 and 2015 respectively.

Thus Lyft had approximately 6% of Uber’s bookings in 2015 ($0.4b/$7.1b) and 14% of
Uber’s bookings in 2016 ($1.9b/$13.2b).

A1.2 Uber US market capitalization and gross bookings

The spreadsheet printed in Figure A1 details our calculations of Uber’s 2019 US ridesharing-
based market capitalization and 2019 US ridesharing bookings (i.e. total gross revenues
collected from riders).

22



Figure A1: Calculations for Uber US market capitalization and bookings

A B C D E

1 UBER US market capitalization calculation

2 Shares Average share price Market cap Notes

3 Q3 2019 1,700,213,000 $30.47 $51,805,490,110 PRODUCT(B3, C3)

4 Q4 2019 1,710,260,000 $29.74 $50,863,132,400 PRODUCT(B4, C4)

5 2019 average $51,334,311,255 AVERAGE(D3, D4)

6

7 US/Canada share of revenue 62%

8 Ridesharing share of revenue 75%

9 US share of US/Canada 90%

10 Non-NYC/SEA share 89%

11

12 Average market cap (US) $19,164,843,965 PRODUCT(D5:D10)

13

14 UBER US gross bookings calculation

15 Assumed average 
ride price

Bookings (2019)

16 Total ridesharing bookings $49,700,000,000

17 US ridesharing bookings $27,732,600,000 PRODUCT(D7, D9, D16)

18 NYC bookings (circa 2019) $15.00 $2,737,500,000 500,000 daily rides

19 SEA bookings (circa 2019) $10.00 $255,500,000 70,000 daily rides

20 US bookings net of NYC/SEA $24,739,600,000 D17 - (D18 + D19)

21

22

23 Sources: UBER quarterly 
earnings reports

https://www.wsj.com/
market-data/quotes/

UBER/advanced-
chart

UBER 2019 annual 
report (pp. 61, 115); 

NYC and Seattle 
documents
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A2 Consumer surplus formula

We consider the following demand curve featuring a constant elasticity of demand β1, with
β1 < −1 (i.e. demand is elastic):

ln(q) = β0 + β1ln(p)

Then:

ln(p) = −β0

β1
+

1

β1
ln(q)

p = e
−β0
β1

+ 1
β1
ln(q)

= e
−β0
β1 qβ

−1
1

= aqβ
−1
1

where a = e
−β0
β1 . Total area under the demand curve at ridership level q̄ is:

∫ q̄

0
aqβ

−1
1 dq =

aqβ
−1
1 +1

β−1
1 + 1

∣∣∣q̄
0

=
aq̄β

−1
1 +1

β−1
1 + 1

Consumer surplus relative to the counterfactual of no Uber service is then:

aq̄β
−1
1 +1

β−1
1 + 1

− p̄q̄ =
aq̄β

−1
1 +1

β−1
1 + 1

− aq̄β
−1
1 +1

= aq̄β
−1
1 +1(

1

β−1
1 + 1

− 1)

= − 1

1 + β1
p̄q̄

Thus consumer surplus equals total revenue (collected from riders) rescaled by − 1
1+β1

.
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Using a constant elasticity of demand down to a quantity of zero implies, however, that
there is no choke price at which demand falls to zero (indeed, this formula fails when
demand becomes inelastic). To prevent willingness to pay from becoming unbounded, we
impose a choke price of 5p̄, similar to Cohen et al. (2016). At a choke price 5p̄, we net out
the consumer surplus corresponding to revenues that would be collected if the price were
5p̄ (as there is no additional consumer surplus beyond that price). Revenues that would
be collected at the choke price of 5p̄ are:

5p̄ · q(5p̄) = 5p̄ · 5β1 q̄ = 5β1+1p̄q̄

Thus, total consumer surplus equals total revenue rescaled by − 1
1+β1

(1 − 5β1+1).

For example, if the price elasticity of demand is β1 = −8, then consumer surplus is effec-
tively one-seventh of total revenue, as − 1

1−8 = 1
7 and (1 − 5−8+1) ≈ 1. If β1 = −2, then

consumer surplus is 80% of total revenue, as − 1
1−2 = 1 and (1 − 5−2+1) = 0.8.
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Figure A2: US Traffic Fatalities by Hour of Day, 2012-16
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Figure A3: US Traffic Fatalities in Cities by Hour of Day, 2012-16
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Table A1: Summary Statistics

(1) (2)
All tracts Uber tracts

Census tracts 73,057 44,808
Tract-month observations 4,383,420 2,688,480

A. All fatal accidents
Annual fatalities 34,077 15,898.4
Probability of fatal crash (tract-month) 0.034 0.027
Annual single-vehicle fatalities 14,002.2 5,302.4
Annual multi-vehicle fatalities 14,003.2 6,422.8
Annual pedestrian/cyclist fatalities 6,071.6 4,173.2

B. Alcohol-involved fatal accidents
Annual fatalities 10,035.4 4726.2
Probability of fatal crash (tract-month) 0.010 0.008
Annual single-vehicle fatalities 6,016 2,463.8
Annual multi-vehicle fatalities 3,500.4 1,902.2
Annual pedestrian/cyclist fatalities 519 360.2

Notes: This table reports summary statistics from our FARS dataset.
The unit of observation is the Census tract by month. The time period
spans January 2012 to December 2016. Column (1) reports statistics for
all Census tracts, and Column (2) reports statistics for Census tracts
that see any Uber activity by December 2016.
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Table A2: The Effect of Uber on Alcohol-Related Traffic Fatalities, Distance−0.9 Weight

(1) (2) (3) (4) (5)
Drunk death Drunk death Drunk death Drunk death Drunk death

Rideshare index -0.041 -0.047 -0.044 -0.044 -0.035
(0.013) (0.013) (0.014) (0.015) (0.013)
0.007 0.003 0.006 0.008 0.014

Observations 2,688,480 2,206,800 1,098,840 657,900 438,840
Max tract rideshare activity Nonzero Top 50 pct Top 25 pct Top 15 pct Top 10 pct
Tracts 44,808 36,780 18,314 10,965 7,314
Mean dependent variable 0.788 0.705 0.609 0.556 0.497
Mean index 0.119 0.145 0.279 0.435 0.600

Notes: This table reports coefficient estimates from five separate least squares regressions that progressively
restrict the sample to locations with higher ridesharing activity by the end of our sample period. The unit of
observation is the Census tract by month. The dependent variable in all regressions is an indicator for alcohol-
related fatalities, multiplied by 100. The independent variable is the weighted average of rideshare activity
originating within a 10-mile radius of Census tract i in month t, with weights equal to 0.25 · distance−0.9,
normalized such that a value of 1 corresponds to the average value of the index in 2019. All regressions
include Census-tract and month-of-sample fixed effects. Parentheses contain standard errors clustered by
state. FDR-control q-values in italics.
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Table A3: The Effect of Uber on Alcohol-Related Traffic Fatalities, Distance−1.1 Weight

(1) (2) (3) (4) (5)
Drunk death Drunk death Drunk death Drunk death Drunk death

Rideshare index -0.035 -0.039 -0.036 -0.035 -0.026
(0.011) (0.011) (0.011) (0.012) (0.010)
0.007 0.003 0.006 0.011 0.021

Observations 2,688,480 2,206,800 1,098,840 657,900 438,840
Max tract rideshare activity Nonzero Top 50 pct Top 25 pct Top 15 pct Top 10 pct
Tracts 44,808 36,780 18,314 10,965 7,314
Mean dependent variable 0.788 0.705 0.609 0.556 0.497
Mean index 0.120 0.146 0.281 0.439 0.610

Notes: This table reports coefficient estimates from five separate least squares regressions that progressively
restrict the sample to locations with higher ridesharing activity by the end of our sample period. The unit of
observation is the Census tract by month. The dependent variable in all regressions is an indicator for alcohol-
related fatalities, multiplied by 100. The independent variable is the weighted average of rideshare activity
originating within a 10-mile radius of Census tract i in month t, with weights equal to 0.25 · distance−1.1,
normalized such that a value of 1 corresponds to the average value of the index in 2019. All regressions
include Census-tract and month-of-sample fixed effects. Parentheses contain standard errors clustered by
state. FDR-control q-values in italics.
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Table A4: The Effect of Uber on Alcohol-Related Traffic Fatalities, State-by-Month FEs

(1) (2) (3)
Drunk death Drunk death Drunk death

Rideshare index -0.049 -0.032 -0.039
(0.011) (0.012) (0.011)
0.001 0.016 0.003

Observations 2,206,800 2,206,800 1,098,780
Max tract rideshare activity Top 50 pct Top 50 pct Top 25 pct
Dependent variable coverage All 8p-6a All
Tracts 36,780 36,780 18,314
Mean dependent variable 0.705 0.506 0.609
Mean index 0.145 0.145 0.280

Notes: This table reports coefficient estimates from three separate least squares
regressions. Specifications are identical to Tables 2 and 3 except that all re-
gressions include state-by-month-of-sample fixed effects. Parentheses contain
standard errors clustered by state. FDR-control q-values in italics.
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Table A5: The Effect of Uber on Alcohol-Related Traffic Fatalities, time-shifted placebos

(1) (2) (3) (4)
Drunk death Drunk death Drunk death Drunk death

Rideshare index shifted 7/12 yrs 0.009 0.025 -0.024 -0.019
(0.020) (0.017) (0.038) (0.043)
0.787 0.343 0.787 0.787

Observations 2,206,800 1,098,840 1,765,440 879,072
Max tract rideshare activity Top 50 pct Top 25 pct Top 50 pct Top 25 pct
Sample years 2005-09 2005-09 2001-04 2001-04
Tracts 36,780 18,314 36,780 18,314
Mean dependent variable 0.938 0.852 0.960 0.922
Mean index 0.145 0.280 0.181 0.349

Notes: This table reports coefficient estimates from four separate least squares regressions. The
unit of observation is the Census tract by month, and the estimation sample covers January 2001 to
December 2005 or January 2006 to December 2010. The dependent variable in the all columns is an
indicator for alcohol-related fatalities, multiplied by 100. The independent variable is the weighted
average of rideshare activity originating within a 10-mile radius of Census tract i in month t, with
weights equal to 0.25 · distance−1, shifted back in time by 7 or 12 years. All regressions include
Census-tract and month-of-sample fixed effects. Parentheses contain standard errors clustered by
state. FDR-control q-values in italics.
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Table A6: The Effect of Uber on All Traffic Fatalities, time-shifted placebos

(1) (2) (3) (4)
Any death Any death Any death Any death

Rideshare index shifted 7/12 yrs 0.053 0.056 -0.057 -0.020
(0.031) (0.027) (0.054) (0.058)
0.383 0.343 0.708 0.793

Observations 2,206,800 1,098,840 1,765,440 879,072
Max tract rideshare activity Top 50 pct Top 25 pct Top 50 pct Top 25 pct
Sample years 2005-09 2005-09 2001-04 2001-04
Tracts 36,780 18,314 36,780 18,314
Mean dependent variable 2.582 2.372 2.554 2.394
Mean index 0.145 0.280 0.181 0.349

Notes: This table reports coefficient estimates from four separate least squares regres-
sions. The unit of observation is the Census tract by month, and the estimation sample
covers January 2001 to December 2005 or January 2006 to December 2010. The depen-
dent variable in all columns is an indicator for any fatalities, multiplied by 100. The
independent variable is the weighted average of rideshare activity originating within a
10-mile radius of Census tract i in month t, with weights equal to 0.25 · distance−1,
shifted back in time by 7 or 12 years. All regressions include Census-tract and month-of-
sample fixed effects. Parentheses contain standard errors clustered by state. FDR-control
q-values in italics.
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Table A7: The Effect of Uber on Alcohol-Related Traffic Fatalities by crash type

(1) (2) (3)
1-vehicle drunk death 2-vehicles drunk death Pedestrian drunk death

Rideshare index -0.013 -0.023 -0.007
(0.006) (0.005) (0.006)
0.029 0.001 0.250

Observations 2,206,800 2,206,800 2,206,800
Tracts 36,780 36,780 36,780
Mean dependent variable 0.360 0.283 0.0660
Mean index 0.145 0.145 0.145

Notes: This table reports coefficient estimates from three separate least squares regressions. The unit of
observation is the Census tract by month. The dependent variable in all regressions is an indicator for alcohol-
related fatalities (by crash type), multiplied by 100. The independent variable is the weighted average of
rideshare activity originating within a 10-mile radius of Census tract i in month t, with weights equal to
0.25·distance−1. All regressions include Census-tract and month-of-sample fixed effects. Parentheses contain
standard errors clustered by state. FDR-control q-values in italics.
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